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Abstract: Vinylphosphonates are an important group of compounds. This review summarizes recent
developments in the synthesis and transformations of vinylphosphonates. Owing to the importance of
vinylphosphonates, many different synthetic methods have been developed. Especially useful are various
organometallic synthetic methods utilizing the chemistry of copper, titanium, zirconium, and lithium, etc. The
transformations of vinylphosphonates is also described and include expoxidation, cycloaddition, Suzuki
coupling, and Diels-Alder reactions.

1. INTRODUCTION

The knowledge of phosphorus compounds has expanded
so rapidly that it constitute now a major branch of
chemistry, organic molecules containing phosphorus offer
fascinating possibilities for structural, synthetic and
mechanistic study [1]. Besides being crucial biomolecules in
metabolic processes, as anticancer, antiviral drugs, immuno
suppressives, insecticides, antibacterial, and antifungal [2],
vinylphosphonates are an exceedingly important group of
compounds with important practical applications: e.g. their
derivatives are used as copolymers [3], polymer additives
[4], flame retardants [5], are important tools in further
organic transformations [6], and are useful in many other
applications, such as fuel and lubricant additives [7].

2. PREPARATION OF VINYLPHOSPHONATES

2.1. Via Copper Complexes

The chemistry of organocopper(I) reagents has especially
received a great deal of attention regarding cis-conjugate
addition reactions with acetylenic compounds [8]. Addition
of the above reagent to acetylenic esters undergo a facile
conjugate addition reaction with lithium diorganocuprates
with cis addition taking place exclusively [9]. 1-Alkynyl
sulfoxides and sulfones also undergo cis-conjugate addition
[10].

In contrast, the reactions of organocopper(I) reagents with
a number of 1-alkynyl phosphorus compounds have been
observed in a few cases [11].

Reactions of copper(1)halide complexes of trivalent
phosphorus with vinylic halides afforded vinylphosphonates
2. The direct formation of the vinylic carbon to phosphorus
bond has been accomplished via reaction of vinylic halides 1
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with copper(1)halide complexes of trialkyl phosphites. In
addition, formation of varying amounts of vinylic chlorides
may be observed if the reaction is performed by using
vinylic bromides with copper(1)chloride complexes of
trialkyl phosphites. This halogen-exchange reaction may be
made synthetically useful through the employment of
copper(1)chloride complexes of triaryl phosphites or
phosphines (Scheme 1) [12].
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Recently, stereo- and regioselective synthesis of 1,2,2-
trisubstituted vinylphosphonates 3-9 via organocopper(I)
reagents with good yields (82-97%) had been reported,
(Scheme 2) [13].

Stereoselective syntheses of mono-, di- and trisubstituted
diethyl alk-1-enyl-phosphonates (10-12) from alkynylphos-
phonates have been reported (Scheme 3) [14].

2.2. Via Titanium Complexes

A new method of synthesis of 3-amino-1-
alkenylphosphonates was described. It involves the addition
of imines to the alkynylphosphonate titanium(II) complexes
T2, which are prepared in situ from 1-alkynylphosphonates
and Ti(O-i-Pr)4 /2 equiv of i-PrMgCl. Compounds (T5 a-i)
were obtained regio- and stereoselectively in high yields
[15]. Various types of imines efficiently reacted with the
alkynylphosphonate titanium(II)complex T2, prepared from
1-alkynylphosphonates, and Ti(O-i-Pr)4/2 equiv of i-PrMgCl
to produce the desired 3-amino-1-alkenylphosphonates in
high yields as shown in Table 1. This one-pot reaction is
general and proceeds with aliphatic and aromatic substituents
on both the vinylic carbon and the nitrogen atom of the
imine, in high yields. Other alkyl-vinylphosphonates T3,
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Table 1. 3-Amino-1-Alkenylphosphonates (T5 a-i) Obtained
from Addition of Imines to the Alkynylphos-
phonate Titacycles T2

Entry R R1 R2 31P yield Yield

T5a Ph p-tolyl Me 97% 79%

T5b Ph p-MeO-Ph i-Pr 95% 78%

T5c n-Bu Et Bz 95% 80%

T5d n-Bu Ph Bz 98% 85%

T5e n-Bu Ph Ph 95% 75%

T5f n-Bu Ph i-Pr 98% 79%

T5g n-Bu p-MeO-Ph i-Pr 98% 81%

T5h 1-CIPr Ph Ph 95% 70%

T5i 1-CIPr Ph Bz 90% 71%

T4, T6 and T7 also were obtained by tuning of the Ti(O-i-
Pr)4/ Grignard reagents (Scheme 4) [16].

2.3. Via Zirconium Complexes

Zirconation of 1-alkynes provides zirconocyles that can
be reacted further to give highly functionalized and complex
derivatives.  Hydrozirconation of alkynes to
vinylzirconocenes followed by transmetallation gives access
to a host of new organometallic reagents that react with
various electrophiles in a highly specific manner [17].
Hydroboration of alkynes followed by Suzuki coupling has
been developed over the last ten years into the method of
choice for the stereospecific synthesis of highly substituted
alkenes [18]. In spite of the great popularity of both these
methods, it is surprising that they have never been applied
to 1-alkynylphosphonates. 1-Alkynylphosphonates are
readily available by lithiation followed by reaction with
chlorophosphates. Subsequent conversion of the metallated
Vinylphosphonates by electrophiles would be expected to
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give highly selective and functionalized di- and
trisubstituted vinylphosphonates.

Zirconation of 1-alkynylphosphonates followed by
reductive cyclization by Negishi's reagent, Cp2ZrCl2/2 n-

BuLi [19], has been used extensively for the formation of
three membered zirconacycle Z1 in which after simple
hydrolysis furnished cis-vinylphosphonates Z2. Addition of
various alkynes to Z1 produced the five Membered ring
zirconacylcles Z3, Z4 in which after hydrolysis afforded
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compounds Z5 that have E,E configuration of the double
bonds, and the Z,E compounds Z6, (Scheme 5) [20].

In addition, 1-alkynylphosphonate reacts with Cp2ZrCl2
/ 2 n-BuLi to give a three-membered zirconacycle Z1 that
readily inserts aldehydes. Hydrolysis of the intermediate
five-membered zirconacycles Z7, Z8 leads to two products,
Z9 and Z10, (Scheme 6). In the major product, Z10, the

aldehyde inserted into C2 of the zirconacycle, while in the
minor product, Z9, the aldehyde inserted into C1.Products
Z10 obtained in 38-75% isolated yields. Products Z9 are
obtained in approximately 1-12%. Essentially, only
compounds Z9 are produced with ortho-substituted
aldehydes. The regio- and stereochemistry of Z9 and Z10
were determined by NMR techniques [21].

Furthermore, the three member ring zirconacycle Z1,
insert ketones exclusively at C2 to give the five-member
ring zirconacycle phosphonates Z11 , which can be
hydrolyzed to give 2-(hydroxymethyl)vinylphosphonates,
Z12, in excellent yield, (Scheme 7) [22].

The preparation of l-(hydroxymethyl)vinylphosphonates
by the reaction of α-phosphonovinyl carbanions bearing β-

alkylthio, β-alkyloxy and β,β-bis(alkylthio) substituents
with aldehydes has been reported [23]. It should be noted
that α-phosphonovinyl cuprates do not react with oxygen
electrophiles. The present reaction, on the other hand, is very
general for both dialkyl-, alkylaryl-, and diarylketones. The
yields are uniformly high [13,14].
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2.4. Via Lithium Salts

A sequence of reactions involving conjugate addition of
lithium diisopropylamide (LDA) to alkenylphosphonates L1

and subsequent aldol-type reaction of the resultant lithiated
phosphonates L2 with aldehydes or ketones produced L3.
(Scheme 8). Further elimination products L4 were produced.
It is important to note that L4  is readily converted to
allenes, L5 , by treatment with a base under Horner-
Wadsworth-Emmons conditions. The conversion of L3 to
the 1-(hydroxymethyl)vinylphosphonates, L4, proceeded in
good to high yields [24].

These results imply that conjugate addition of LDA to
L6, enabled the formation of the kinetic anion, L7, which is
not stable and is converted to the thermodynamic allylic
anion, L9 , as shown in (Scheme 9). This suggests that
addition of LDA to, L6, in the presence of benzaldehyde
would increase the yield of L8, because the initially formed
anion, L7, may react rapidly with benzaldehyde before the
establishment of the equilibrium with L9. Thus, addition of
a solution of 1.1 equiv of LDA in THF to a mixture of L6
and an equivalent of benzaldehyde in THF afforded, after 1 h
at -78 °C, the desired product, L8, in acceptable 73% yield
along with L11, in 11% yield [24].

2.5. Via Arbusov Reaction

The Michaselis-Arbusov reaction of 2-chlorovinyl
ketones with trialkyl phosphates afforded 3-
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oxovinylphosphonates, 14, as well as enolphoshonates, 15,
and 3-oxo-1,1-alkanebisphosphonates, 16, (Scheme 10) [25].

2.6. Via Heck Reaction

A facile synthesis of aryl vinylphosphonates 17-23 has
been reported based on Heck reaction of aryldiazonium salts
bearing electron-withdrawing or donating groups with
vinylphosphonates. A one-pot procedure consisting of Heck

reaction and hydrogenation permits the clean formation of
useful Wadsworth-Emmons reagents (Scheme 11) [26].

2.7. Via Olefination Reactions

a) Vinylphosphonates were obtained using Peterson
reagent, which is generated in situ.33 Products Z, and
E-1-alkylidene-3-oxobutylphosphonates 24 were
obtained in good yields (Scheme 12) [27].
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b) Acid or base catalyzed demethoxylation of (2-
methoxyethyl)phosphonates produced vinylphosphon-
ates, 25, in moderate yields (Scheme 13) [28].

2.8. Via Radical Trapping

Vinylphosphonate formation via a novel cyclization-
vinyl radical trapping sequence has been reported recently,
(Scheme 14). This study provides a novel route to new
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vinylphosphonates, 26 , and the biologically active
molecules, 27, (Z and E) [29].

2.9. Via Various Other Catalytic Preparations

a) The palladium(0)-catalyzed reaction of 3-acetoxy-1-
alkenyl phosphonates with ethyl (diphenyl methylene

amino acetate) and N,O bis(trimethylsilyl) acetamide
provided the precursors of the 2-amino-5-
phosphonovaleric acid and related compounds, (P1 a-
e), in high yields (Scheme 15) [30].

b) The reaction between 1-acetoxyallylphonates or
-phosphinates with dialkyl hydrogen phosphites or
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phenylphosphonous esters in the presence of NiCl2
gave a mixture of the corresponding allyl-and
vinylphosphonates P2, P3 (Scheme 16) [31].

c) Tanaka et al. studied reactions of alkynes with the
phosphonate (4,4,5,5-tetra-methyl-1,3,2l 5
-dioxaphospholane 2-oxide), which is most reactive
in the addition to multiple bonds. The reaction
catalyzed by Rhodium complexes was shown to be
complementary to that catalyzed by palladium to
afford the corresponding vinylphosphonates P4. As a
result, the isomers with E configuration of the double
bond were obtained at room temperature in high
yields (Scheme 17) [32].

Reactions with internal alkynes are very difficult to
occur, they take more than 60 h against 13-22 h for
terminal alkynes. However, the products P5  are
formed in high yield in the presence of Pd catalyst,
and the process clearly follows the syn-addition
pattern [33].

d) The Cu catalyzed reactions of β-bromostyrenes with
dialkylphosphites to obtain compounds possessing
second harmonic generation (SHG) activity P6 .
Strongly polar solvents, KH as a base, and elevated
temperature are necessary (Scheme 18) [34].

e) Vinylphosphonates P7 were generated in high yields
by the reactions of triethyl phosphite with alkenyl
halides having an alkoxy or diethylamino group on
α - position in the presence of nickel catalyst, and
analogous reactions with β-halovinyl ethers or β-
haloenamines occur at higher temperature, but the
yields of P8 are also fairly high (Scheme 19) [35].

f) (E,E)-1,3-Diiodobutadiene was converted into bis-
1,4-(diethoxyphosphinoyl)-1,3-butadiene, P9-P11 in
high yield (Scheme 20) [36]. Likewise, mono- and
disubstitution products are formed in reactions with
1,3-dienyl halides [37].
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g) Reactions catalyzed by palladium(II)chloride or
acetate also provide almost quantitative yields of the
bis-vinylphosphonates products P12 , P13 . The
process is highly stereospecific: the configuration of
the initial alkene is retained in the product. Scheme
21  illustrates the reaction with isomeric 1,2-
dichloroethenes as an example [38].
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3. OTHER MISCELLANEOUS METHODS FOR THE
PREPARATION OF SPECIFIC VINYLPHOSPHON-
ATES

3.1. Z- and E-di-Substituted Vinylphosphonates

The addition of trimethylsilyloxy phosphorus (III)
derivatives, generated in situ, to α -haloacrylates and
acrylonitriles at room temperature provides a mild, general
and stereoselective route to phosphonoacrylates, 28 (Scheme
22) [39].
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Treatment of a catalytic amount of DBU (20 mol%) with
a mixture of diethyl 3-cyanoallylphosphonate 29 and N-
tosylsulfonylimines gave diethyl 3-cyanobuta-1,3-
dienylphosphonates 30 in 72-83% yields. All the products
(30a-h) are assigned 1E,3Z configurations on the basis of
the crystal structure of diethyl (1E ,3Z ) -3-cyano-4-
naphthylbuta-1,3-dienylphosphonate 46h, the proton NMR
spectra and the proposed reaction mechanism (Scheme 23)
[40].

3.2. Fluorinated Vinylphosphonates

a) Diastereoselective synthesis of cyclic α -
fluoromethyldienephosphonates, 32,  using α -
fluoroallenephosphonate, 31, as dienophile was
reported, (Scheme 24) [41]. The dimerization of α-
fluoroallenephosphonate and its Diels-Alder reaction

with various dienes provide a diastereoselective route
to cyclic and bicyclic α-fluorovinylphosphonates, 32
[42].

b) Gross et al. [43] reported the palladium-catalyzed
stereoselective synthesis of (E)-and (Z)-α-fluorovinyl-
phosphonates 33, which are analogs of glucose 6-
phosphates (Scheme 25).

c) Fluorinated vinylphosphonates 34 were obtained in
one-pot conversion of trifluoro ester to α-fluoro-β-
trifluoro-β-alkoxy-vinylphosphonates (Scheme 26)
[44].

3.3. Chlorinated Vinylphosphonates

New chlorovinylphosphonates 35  bearing a 1,3,2-
dioxaphosphorinane ring which are useful for the
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stereospecific synthesis of 5-chlorofurfuryl substituted
olefins and chloro-substituted dienes have been obtained by
an easy, inexpensive route. The utility of some of these in
the synthesis of ferrocenyl- and anthracenyl-substituted
unsymmetrical acetylenes has been explored. The structures
of these vinylphosphonates was determined by the X-ray
(Scheme 27) [45].

3.4. Amino-Vinylphosphonates

a) Synthesis of (3-amino-1-alkenyl)phosphonic acids
from allylic α- and γ-hydroxy-phosphonates has been
reported [46]. (3-azido-1-alkenyl)phsophonates A5
was prepared regioselectivity by reaction of (1-
hydroxy-2-alkenyl)phosphonates A2 and subsequent
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thermal 1,3-rearrangement of the allylic γ-
aminophosphonates A4 (Scheme 28).

b) The reaction of PhCH2C(O)NR2/P(O)Cl3 (R = alkyl)
with diethyl or triethyl phosphite afforded E-
vinylphosphonates A6 with high geometrical
stereoselectivity and acceptable yields (Scheme 29)
[47].

3.5. Oxo-Vinylphosphonates

a) Several oxo-phosphonates O1 were produced by
oxidation of α -hydroxyphosphonates, which are

prepared by the Pudovik reaction of the cyclic
phosphates (Scheme 30) [48].

b) Different vinylphosphonates, O2-O5, including 3-
oxo-vinylphosphonates, O5, (Scheme 31), have been
synthesized in good yields by NaOCH3-catalyzed
regioselective 1,2-addition of dimethyl phosphates to
acyclic and cyclic α-enones at -35 oC [49].

c) Attolini et al. studied the reactions transformation of
cyclic dialkyl (3-oxo-1-cycloalkenyl) phosphonates
O 6 . Baker’s yeast-mediated enantioselective
reductions afford the corresponding dialkyl (3-
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hydroxy-1-cycloalkenyl) phosphonates O7, (Scheme
32) [48,50].

d) 2,2,2-Triethoxy-oxaphospholene O8 reacts under
mild, neutral conditions with bromine to produced 3-
oxo-vinylphosphonate O10 in high yields (Scheme
33) [51].

3.6. Thio-Vinylphosphonates

 Phosphonoketene dithiocetals, (S2a-e) were obtained in
good yields by the reaction of ethyl phosphonoacetates with
thiols in the presence of an alkylaluminium dichloride or
dialkylaluminium chloride (Scheme 34) [52]. Reaction of
2,2-dithio-1-phosphovinyl phosphonates with aldehydes
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afford 1-(hydroxymethyl)thiovinylphosphonates S3, S4 in
good to moderate yields.

3.7. Boranated Vinylphosphonates

Hydroboration of alkynylphosphonates with pinacolborane
proceeds to give phosphonoboronates B1 (Scheme 35).
Surprisingly, such compounds have not been reported before
[53].

4. REACTIONS, ISOMERIZATIONS AND
TRANSFORMATIONS OF VINYLPHOSPHONATES

4.1. Allylic Phosphonates from Vinylphosphonates

A facile route to allylic phosphonates via base-catalyzed
isomerization of the corresponding vinyl phosphonates K1
a-e has been reported (Scheme 36) [54].

4.2. Epoxides from Vinylphosphonates

Epoxyalkylphosphonates are useful intermediates in the
synthesis of modified natural and synthetic polymers [55],
and also in the preparation of bioactive substances [56].

A new stereoselective route to substituted 1,2-
epoxyalkylphosphonates through oxidation of corresponding
alk-1-enylphosphonates, K 2 , by ‘in  situ’ generated
ethylmethyldioxirane has been described (Scheme 37) [57].

P

R3R2

R1

O
OEt

OEt
O O

EtMe P

R3R2

R1

O

OEt

OEt

O

+

R1  = alkyl, Ph

R1  = alkyl, Ph, H

R1  = alkyl, H

K2
37

Scheme 37.

4 .3 .  Hydroxy(methyl)  Phosphonates  from
Vinylphosphonates

Diethyl trans-1,2-epoxyphosphonates were synthesized
starting from the corresponding diethyl t r a n s -
vinylphosphonates 38 by the previously described reaction
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with dioxirane [58]. Compounds 38 were prepared by
standard Wittig–Horner reaction of tetraethyl
methylenebisphosphonate with aromatic aldehydes in
aqueous two-phase system [59]. The threo isomers K3a-d
were synthesized independently by the Sharp less approach,
using AD-mixes as catalysts for the dihydroxylation of the
corresponding trans-vinylphosphonates 38. The use of AD-
mix-β gave preferentially the (1S,2S) isomer. Consequently,
the use of AD-mix-α resulted in the preferential formation of
the isomer (1R,2R). Quinine have been used as a chiral
selector to determine the course of biocatalytic hydrolysis of
trans-epoxyethanephosphonates by the action of Aspergillus
niger and thus verify the usefulness of method for the
evaluation of the stereospecifity of this process. Contrary to
the chemical hydrolysis, biocatalysis gave preferentially
erythro-1,2-dihydroxyl-akanephosphonates (with only trace
amounts of the threo isomers), which were obtained in good
yields and with enantioselectivities strongly dependent on
the structure of the substrate used. At this moment we are,
however, unable to determine, which of the two formed
isomers (1S,2R) or (1R,2S) is the major one (Scheme 38)
[60].

4.4. Alkynyl Vinylphosphonates from Vinylphosphon-
ates

The β-hetero-substituted vinylphosphonates 39a-c on
treatment with LDA or LTMP were readily lithiated at the
α -position of the phosphono group, and the resulting α -
lithiovinylphosphonates were trapped with various
electrophiles to afford the corresponding α-functionalized
vinylphosphonates 40 in 55-96%yields. The Friedel-Crafts
reaction of α -(silyl)- or α -(germyl)-phosphonoketene
dithioacetals, the reaction with acid chlorides gave α -
acylated phosphonoketene dithioacetals, 41 in 53-91%
yields. The palladium-catalyzed cross-coupling reaction of β-
ethoxy-α-(tributylstannyl) vinylphosphonate with a variety
of organic halides (R = acyl, allyl, aryl, etc.) provided β-
ethoxy-α -substituted vinylphosphonates in good to
moderate yields. The palladium-mediated cross-coupling
reaction of α -(iodo)vinylphosphonates with terminal
acetylenes afforded α-alkynylated vinylphosphonates K5 in
69-83%yields. Several α-functionalized β-hetero-substituted
vinylphosphonates were applied to the synthesis of pyrazoles
and an isoxazole possessing a phosphono function (Scheme
39) [61].
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4.5. Suzuki Coupling of Boranated Vinylphosphonates

Hydroboration/Suzuki coupling of alkenylphosphonates,
B1, with PBH, in a one-pot procedure to yield trisubstituted
vinylphosphonates 42 , 43  in good overall yields and
provides a new synthesis of these compounds (Scheme 40)
[53].
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4.6. Cycloadducts Formation

Vinyl phosphonates 44 α-substituted with carboxylate,
nitrile, sulfone and phosphonate groups reacted with N-buta-
1,3-dienylsuccinimide to give [4 + 2] ortho-cycloadducts as

mixtures of endo/exo stereoisomers K6, K7 (Scheme 41)
[62].
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Scheme 41.

4.7. Dienes Formation from Vinylphosphonates

Transition metal-catalyzed arylation and alkenylation of the
α -bromovinylphosphonates 45 were investigated with
organoboranes and borates. Arylation was successful with
the aryl boronic acids and a palladium catalyst, to produce
K8, while alkenylation was found to proceed with alkenyl
borates and a nickel catalyst to afford the diene product K9
(Scheme 42) [63].
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4.8. Diels-Alder Reaction of Vinylphosphonates

The Diels-Adler reactions between diethyl 3-oxo-
vinylphosphonate, 46 and cyclopentadiene and furan
produced the corresponding diastereomers, K10-K 1 3
(Scheme 43) [64].
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Asymmetric synthesis of β-and γ-amidophosphonates,
K14  and K15 by Diels–Alder reaction between the
vinylphosphonate 46, 47 and chiral aminodiene was reported
(Scheme 44) [65].
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